





Net Zero Nature Positive Accelerator Integrated Programme

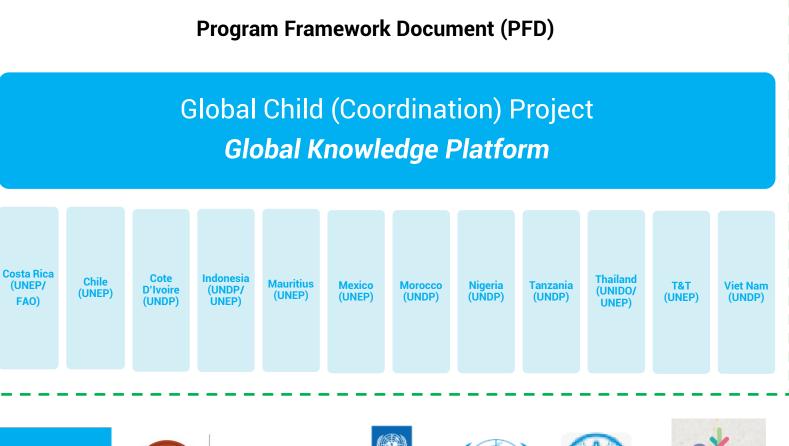
Joy Aeree Kim, UNEP with Andrea Bassi, KnowlEdge Srl







To accelerate implementation of nature-positive, netzero pathways by investing in nature and new technologies








#### **Objectives:**

- Support the adoption of *net-zero longterm strategies and policies* that are coordinated with national biodiversity and land degradation strategies.
- Promote the effective *integration of the climate and nature agendas* at the national and global level.
- Invest in *NZNP-aligned pipelines* of projects that generate multiple global environmental benefits
- Support the development of *robust data systems* to monitor progress towards NZNP targets















Global Programme Structure

#### **Upstream component**

Cross-ministerial
coordination processes



Development of sectoral **NZNP investment plans** and pipelines

**Downstream component** 



**Socio-economic analysis** and investment scenario

development

Net-zero Nature Positive strategies/LTSs and/or policies implementation



Technical assistance for **project preparation** 

Capacity-building activities needed

g |

**Co-investment of GEF resources** in specific projects

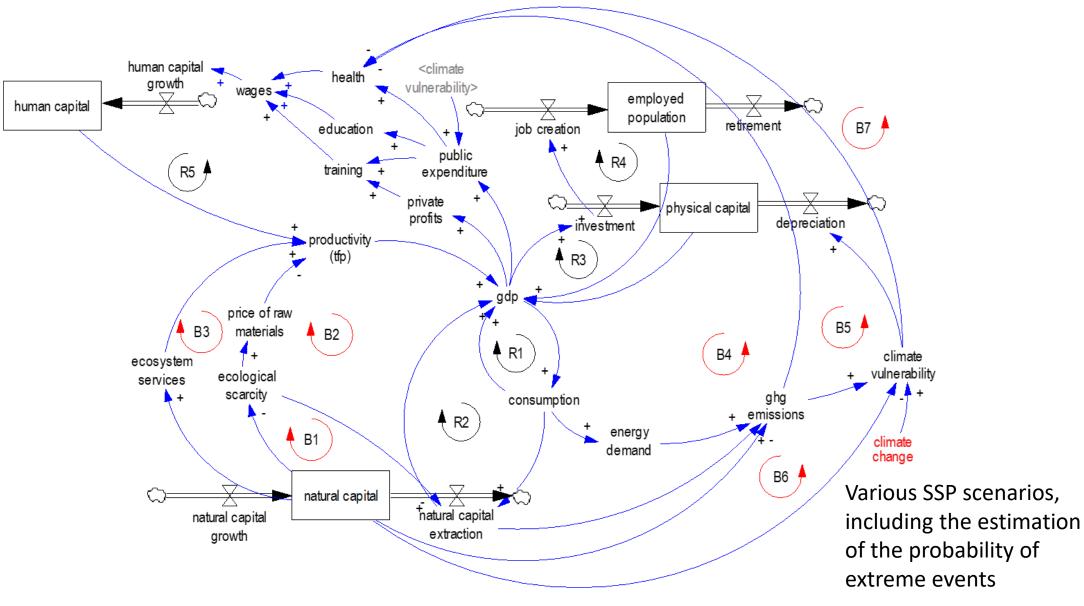


Tracking progress and curating/sharing knowledge

# Defining, mobilizing and scaling up integrated NZNP financing

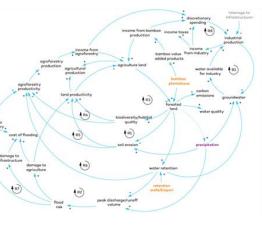
| ADB + CAF                            | Integrate NZNP standards and guidance into their operations and portfolios to enable and catalyze NZNP-aligned investmen.<br>Support the deployment of net-zero and nature-positive diagnostic tools, metrics, standards, and approaches for countries in their respective regions and support catalytic investments that produce integrated development and NZNP outcomes.<br>Capacity development and implementation support the adoption of the UNEP-University of Oxford Sustainable Budgeting Approach as proof of concept in the preparation of one policy-based loan in each region. |                     |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| СРІ                                  | Identify and analyze key barriers to NZNP investment at a regional level through a standardized methodology<br>Lead on a definition of "NZNP-aligned finance" and provide guidance for Fis and DBs, in consultation with key stakeholders<br>Mobilize and engage the CPI network of key financial sector stakeholders to co-create and validate outputs, promote guidance, and<br>support capacity development efforts as part of the broader Global Programme workshops.                                                                                                                   |                     |  |  |  |
| DB NZNP<br>coordination<br>structure | Enhance coordination among DBs for internal Integration of climate and nature agendas, enabling the mobilization of downstream investment in integrated solutions to tackle development, climate, and nature issues, and fostering the creation of a durable financial ecosystem.                                                                                                                                                                                                                                                                                                           | UN @<br>environment |  |  |  |

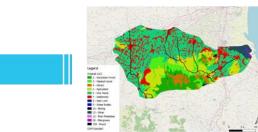
programme


### **Tools for Integrating Nature**

|        | Inclusion of biodiversity elements into strategy and planning through tools such as IBAT, UN Biodiversity Lab, WDPA |
|--------|---------------------------------------------------------------------------------------------------------------------|
| WCMC   | Metrics to measure the impacts of investments on nature/collation of data sets and risk/dependency screening tools  |
| WCIVIC | A user guide on ENCORE - for governments and financial institutions (sectoral level)                                |
|        |                                                                                                                     |



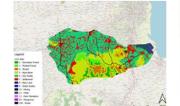

# Upstream level support: integrating nature in the NZNP strategy through macro-economic model

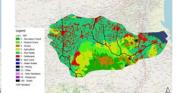

- Integrating nature in development planning via:
  - Quantification of changes to ecosystem extent, condition, ecosystem services (in alignment with SEEA-EA)
  - Integration of ecosystem service provisioning in production functions (e.g. Green Economy Model – GEM)
  - Creation of an investment, and policy focused Cost Benefit Analysis (CBA) that is both financial (i.e. it only consider cash flows) and economic (i.e. it considers the economic valuation of externalities) via the economic valuation of ecosystem services
- The result is an analysis that allows to assess the contribution of nature to (i) cost reduction (e.g. via improved climate resilience), (ii) value generation and (iii) improved equity.



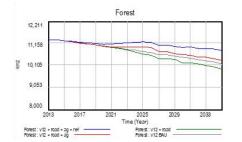
#### Summary of the modelling process

We create a CLD to investigate, understand and explain the main drivers of change of the system, including those factors that have resulted in past land cover change and those that may determine future changes.



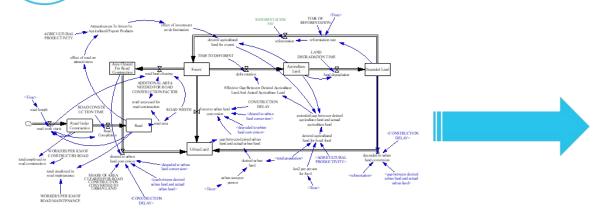

We collect data from various sources, including from historical land use maps.



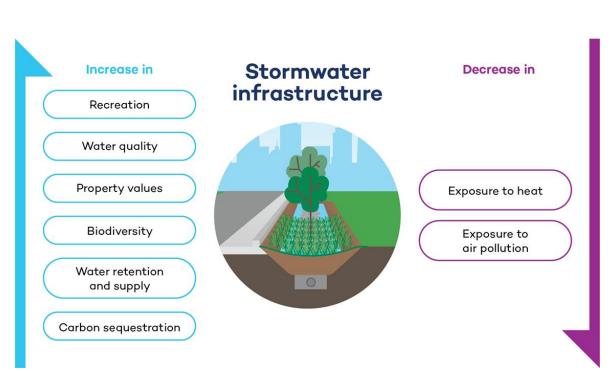




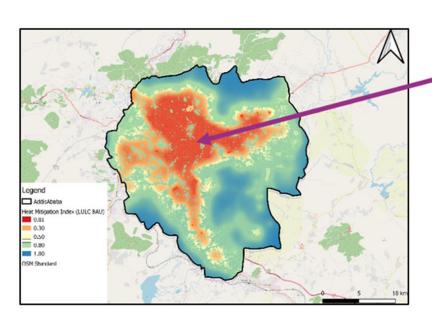






We use the quantitative model to generate various scenarios. Among the indicators forecasted are land use and land cover. These results are then used to generate new, future land cover maps, so that we can estimate a range of ecosystem services.

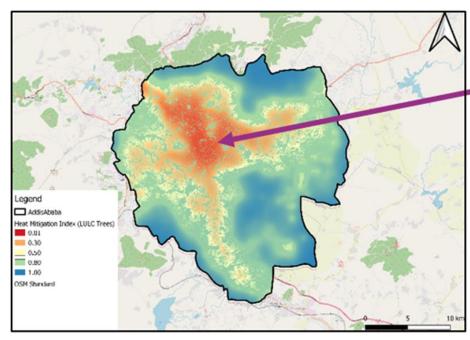
3

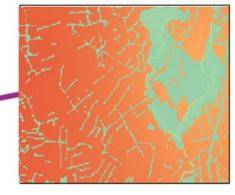

We then develop a mathematical, System Dynamics model. This model uses the CLD as blueprint, and we parametrize it and calibrate it using historical data, including those that are spatially explicit.








Assessing the impact of tree planting on the heat island effect




Heat mitigation index using the current LULC



Zoom on roads

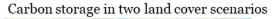




Zoom on roads and trees

Average temperature (degC) 31.06

Heat mitigation index using the LULC with trees

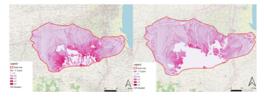

InVEST


ntegrated valuation of ecosystem services and tradeoffs

InVEST

ntegrated valuation o ecosystem services and tradeoffs

#### Integrated Cost Benefit Analysis economic and financial






N export in two land cover scenarios



#### P export in two land cover scenarios



|            |                                      | 20-year lifetime<br>(2021-2040) |         | 30-year lifetime<br>(2021-2050) |         |
|------------|--------------------------------------|---------------------------------|---------|---------------------------------|---------|
|            |                                      | RCP 4.5                         | RCP 8.5 | RCP 4.5                         | RCP 8.5 |
| Added Be   | nefits                               |                                 |         |                                 |         |
| Value of I | oamboo exports                       | 0.21                            | 0.21    | 0.35                            | 0.35    |
| Value of a | agroforestry benefits                | 2.12                            | 2.12    | 3.35                            | 3.35    |
| Tree plan  | ting wages                           | 0.52                            | 0.52    | 0.52                            | 0.52    |
| > Carbon   | storage benefit                      | 31.99                           | 31.99   | 31.99                           | 31.99   |
| TOTAL AD   | DDED BENEFITS                        | 34.84                           | 34.84   | 36.21                           | 36.21   |
| Avoided    | Costs                                |                                 |         |                                 |         |
| Avoided f  | lood damages to households           | 24.00                           | 24.53   | 486.79                          | 77.96   |
| Avoided f  | lood damages to agriculture          | 12.06                           | 14.00   | 193.73                          | 36.90   |
| Avoided e  | erosion damages to agriculture       | 17.85                           | 42.64   | 41.65                           | 52.56   |
|            | nitrogen pollution                   | 17.10                           | 17.10   | 25.65                           | 25.65   |
|            | phosphorus pollution                 | 8.08                            | 8.08    | 12.12                           | 12.12   |
| TOTAL A    | /OIDED COSTS                         | 79.09                           | 106.34  | 759.93                          | 205.18  |
| Investme   | nt & Maintenance Costs               |                                 |         |                                 |         |
| Improved   | l land management investment cost    | 8.94                            | 8.94    | 8.94                            | 8.94    |
| Absorptio  | on wells and biopori investment cost | 0.56                            | 0.56    | 0.56                            | 0.56    |
| Annual m   | aintenance costs                     | 0.10                            | 0.10    | 0.14                            | 0.14    |
| TOTAL CO   | OSTS                                 | 9.60                            | 9.60    | 9.64                            | 9.64    |
| NET BEN    | IEFITS                               | 104.34                          | 131.59  | 786.50                          | 231.75  |
| BENEFIT    | TO COST RATIO                        | 11.87                           | 14.71   | 82.56                           | 25.03   |

200.00

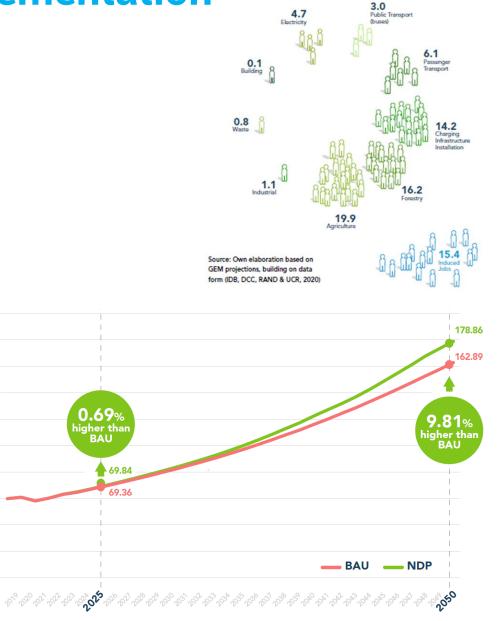
180.00

160.00

120.00

100.00

80.00


60.00

20.00

0.00

**USD** billions

| Transport (public, private, freight)                                  | 🏊 📟                        |                   | Industry |                                                     |                            |          |                   |
|-----------------------------------------------------------------------|----------------------------|-------------------|----------|-----------------------------------------------------|----------------------------|----------|-------------------|
| Indicators                                                            | 2015 - 2020<br>BAU and NOP | BAU 2050          | NDP 2050 | Indicators                                          | 2015 - 2020<br>BAU and NDP | BAU 2050 | NDP 2050          |
| Motorized passengers<br>using public transport                        | <b>39</b> %                | 37%               | 50%      | Process decarbonization                             | 0%                         | 30%      | <mark>65</mark> % |
| Motorized passengers<br>using private transport                       | 61%                        | <mark>6</mark> 3% | 40%      | Energy demand electrified                           | 17%                        | 17%      | <mark>60</mark> % |
| Demand reduction due to non-motorized<br>transport and digitalization | 0%                         | 0%                | 10%      | Waste                                               |                            |          |                   |
| Electrification of buses and minibuses                                | 0%                         | 0%                | 85%      | Waste composted                                     | 2.2%                       | 5%       | 55%               |
| Electrification of taxis, private<br>and institutional transport      | 0%                         | 5%                | 100%     | Recycled waste                                      | 3.7%                       | 12.5%    | 55%               |
| Penetration of hydrogen buses and minibuses                           | 0%                         | 0%                | 10%      | Sewage treated                                      | 3%                         | 13.7%    | 75%               |
| Demand absorbed by Limon's<br>electric freight train and logistics    | 0%                         | 0%                | 10%      | <u> </u>                                            |                            |          |                   |
| Electrification of freight transport                                  | 0%                         | 0%                | 10%      | Agriculture, Livestock and Forestry                 |                            |          |                   |
| Penetration of hydrogen-fueled<br>cargo transport                     | 0%                         | 0%                | 10%      | Energy demand<br>electrified                        | 32%                        | 32%      | <b>50</b> %       |
| Electricity (+)                                                       |                            |                   |          | Reduction in carbon<br>intensity of crop production | 0%                         | 0%       | 30%               |
| Electricity from renewable resources                                  | <b>98.5</b> %              | 100%              | 100%     | Enteric fermentation and                            | 0%                         | 0%       | 60%               |
| Buildings 💼                                                           |                            |                   |          | Deforestation                                       |                            |          |                   |
| Reduction in energy use per household                                 | 0%                         | 0%                | 2.9%     | reduction                                           | 0%                         | 0%       | 100%              |
| Households electrified                                                | 62%                        | 62%               | 80%      | Increased sequestration<br>per hectare              | 0%                         | 0%       | 10%               |



## Thank you



(Ms.) Joy Aeree Kim Economic and Trade Policy Unit Industry and Economy Division UN Environment Programme Email: joy.kim@un.org

www.unep.org