2050 Pathways Platform annual meeting series

Session 1: Laying the foundations for long-term low-emission development strategies

Wednesday 6 April 2022
Agenda

• **Welcome and introductions** from the 2050 Pathways Platform Secretariat on the foundations for long-term strategies (LTS)

• **Presentations** from countries and grantees
 o Adapting LTS to specific country contexts: examples from working with SIDS and LDCs – Climate Analytics
 o Including adaptation and AFOLU considerations in LTS – Vivid Economics
 o Land-use modelling for LTS: experiences from Argentina – National Agricultural Technology Institute of the Ministry of Agriculture and Fisheries of Argentina
 o Energy sufficiency in long-term decarbonisation scenarios – négaWatt

• **Q&A session** with the audience

• **Closing remarks** by the 2050 Pathways Platform Secretariat
2050 Pathways Platform in brief

Key facts

- Government and multi-stakeholder initiative launched at COP22 gathering countries with interest on long-term strategies and ambition
- **Hosted by the European Climate Foundation**
- Funded by philanthropy and public funds
- **36 member countries**, working with many more non-member countries to support LTS
- Bringing together a **network of donors, international and national think tanks, and climate policy experts** on long term planning
- Granting governments, local analytical organizations, local stakeholders, and global think-tanks

Areas of support

<table>
<thead>
<tr>
<th>FINANCIAL SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Provide financial grants to governments for the development of LTS. This could include support for modelling, stakeholder consultations, or personnel support to coordinate the development of LTS.</td>
</tr>
<tr>
<td>• Bring together relevant donors to fund the successful development of LTS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KNOWLEDGE & ADVISORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Organize an annual meeting to bring together governments, donors, and other actors like think tanks, sub national governments, and businesses to discuss different elements of LTS. This meeting presents not just a networking opportunity but also allows countries to keep abreast of the latest developments and best practice.</td>
</tr>
<tr>
<td>• Provide communications advice and assistance to governments for increasing the reach of their LTS to international audiences, particularly international donors and the private sector.</td>
</tr>
<tr>
<td>• Facilitate connections with international experts on long-term planning to address specific needs of countries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITY BUILDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conduct training and workshops with government officials and key stakeholders to increase understanding of the main elements and approaches to developing an LTS.</td>
</tr>
<tr>
<td>• Support technical teams in charge of modelling to share best practice and lessons from other countries.</td>
</tr>
<tr>
<td>• Commission global knowledge products to address needs and questions raised by countries in relation to their LTS.</td>
</tr>
</tbody>
</table>
Status of LTS elaboration worldwide

51 submissions to the UNFCCC

LTS submitted
NZ LTS submitted
LTS under elaboration
Development stages of a country LTS

1. **Political Decision for Long-term Strategies**
 - Foundational work / Long-term vision
 - Political convening
 - Inception and training workshops
 - Coordination of LTV process
 - Development of desktop analysis and stakeholder consultations
 - LTV drafting and editing

2. **Visioning: Aligning Climate Change, Sustainable Development and Socio-Economic Objectives**
 - Overall LTS formulation
 - Coordination of LTS process
 - Analytical studies & models
 - Stakeholder consultations
 - Drafting LTS
 - Communication on the LTS

3. **Modeling: Quantification, Assumptions & Deliberations**
 - Post LTS
 - Policy & regulatory analysis
 - Definition of progress monitoring & reporting governance
 - Analytical work to define finance plan for delivery
 - LTS - NDC calibration

 - Analytical work to define finance plan for delivery

5. **Policy, Regulatory and Institutional Actions**
Long-term visions: foundations of LTS

• **LTV set the framework for the strategy** to include principles, goals, objectives, serving as the direction of travel for the country to trigger transformational change.

• **LTV need to be anchored in the economic, geographic, and social circumstances of the country.** Goals should draw from existing economic and social objectives, including SDGs, and how these goals may be affected by climate change and interact with the low-GHG and just transition in the future. The climate-development nexus is central to LTS.

• **LTV help identify the socioeconomic impacts of the transition**, highlighting potential barriers and trade-offs to achieving objectives, e.g. challenges for sectors and regional communities due to the transition, lack of technological know-how, lack of societal buy-in, financing challenges at the country level, etc.

• **LTV are a ‘necessity’ for the LTS** and require a strong involvement of line and cross-cutting ministries who will feed-in their priorities for the LTS from this foundational stage of the LTS elaboration process.
Sending the right signals through LTS

- **Inform national policy-making**: showcase the future priorities of a country, helping policymakers in aligning public resources, policy and regulations to the long-term objectives.

- **Showcase intent and ambition**: demonstrate concrete ways in which countries intend to transform the economy, especially for those that have committed to net-zero.

- **Guide investments**: LTS and related policy signals can guide investment decisions, helping avoid stranded assets or locking in higher levels of emissions in long-lived assets.

- **Define and leverage international cooperation**: highlight areas where the country thinks it needs international cooperation and support, to attract finance and investments. MDBs are increasingly aligning their country partnership documents to the long-term transition.

- **Increase public awareness and trigger action**: reach many actors within the country who can play a central role in implementation of the LTS (hence the importance of following a whole-of-government and cross-societal approach to LTS - to be explored further in our second session).
Presentation from select countries and grantees on specific components of LTS:

1. Adapting LTS to specific country contexts
2. Including adaptation and AFOLU considerations in LTS
3. Carbon neutrality of the AFOLU sector
4. Energy sufficiency in long-term decarbonisation scenarios
Adapting LTS to specific country contexts, examples from working with SIDS and LDCs

2050 Pathways Platform Annual Meeting Series
Session 1: Laying the foundations for LTS

Damon Jones
Head of Climate Diplomacy, Climate Analytics
06.04.2022
LTS in SIDS and LDCs

• Long-term strategies (LTS) can provide blueprint for:
 • a resilient, decarbonised future that is compatible with limiting warming to 1.5°C
 • sectoral transformations through a comprehensive and integrated strategy that covers all sectors

• Can help address other needs and goals:
 • food security
 • air quality improvements and health outcomes
 • job creation
 • reducing impacts on biodiversity
 • etc.

Figure 21: Job potential for illustrative scenario: Job years in Construction and Installation jobs (solar and wind combined)
Lots of challenges...

- low level of income and other financial constraints
- highly vulnerability to external shocks
- multiple long standing structural impediments for sustainable development
- human capacity and resource constraints
- lack of robust data collection systems and datasets, making emissions and socio-economic projections difficult
- technical and institutional capacity constraints
- additional challenges with long-term priority setting, vision and policy coherence
...plenty of opportunities

- support for short- and mid-term policy and planning
- avoid stranded assets caused by only short-term planning
- enhance resilience to climate impacts
- climate-resilient infrastructure to avoid future losses
- expanded employment opportunities in new technologies
- facilitate and enhance access to new sources of funding support for development
- greater energy independence/security and consequent cost savings
- expand access to energy to populations
LTS submitted to date

- LDCs
 - Benin
 - Cambodia
 - Nepal
- SIDS
 - Fiji
 - Singapore
 - The Republic of the Marshall Islands
 - Tonga
Key message 1: LTS as critical driver for improved resilience in SIDS and LDCs

• Decarbonisation and resilience intrinsically linked
• Taking vulnerability and exposure to accelerating climate change impacts into account
• Planning of resilient infrastructure and maximising resilience across sectors
• Energy system resilience – includes ownership, fiscal resilience considerations (e.g. not adding to debt burden)
• Substantial potential economic and social benefits of developing an LTS with resilience built-in
• Incorporating adaptation strategies and addressing loss and damage into long term planning
Key message 2: aligning NDCs and LTS

- Better informed decision making by considering short and long term factors
 - Identify priority sectors with need for long term planning - e.g. energy and transport in SIDS, energy and agriculture in LDCs
 - Long-term strategy helps short-term decision making - e.g. technology/infrastructure choices to avoid stranded assets

- Process synergies and efficiencies
 - Integrating domestic processes
 - Coordinating among ministries, agencies and departments
 - Streamlining of data collection and long-term modelling
 - Stakeholder consultations for LTS and NDC in tandem
Key message 3: coverage across all sectors

• Benefits in long-term strategies covering all sectors
 • allows interactions between sectors to be considered
 • key to a comprehensive and integrated decarbonisation strategy
• SIDS:
 • energy sector represents the biggest share of emissions for most SIDS
 • as SIDS decarbonise, emissions from other sectors such as agriculture, industrial processes and product use, and waste will grow in relative importance
• LDCs:
 • largest contribution to emissions: agricultural and land sectors, energy sector
 • for a third of LDCs, combined emissions from agriculture and land sectors account for more than 75% of emissions
 • interventions solely in energy sector won’t be sufficient to reduce these countries’ emissions profiles
LTS in SIDS

• For majority of SIDS, most emissions come from energy sector:
 • Main lever for reducing emissions will be phasing out of diesel fuel or residual fuel oil in power sector and gasoline and diesel in transport sector
 • Replacement with solar PV and wind, with complementary capacity from geothermal, biomass and hydropower, and/or wave and ocean technologies
 • Transitioning to power system with high shares of variable renewable energy + battery storage
 • Shifting away from fossil fuels to reduce fuel imports and increase SIDS’ energy independence
 • Increasing penetration of renewable technologies can lead to significant decreases in cost of electricity

• End-use sectors (e.g. transport, buildings) will need to decarbonise through electrification and energy efficiency measures
Figure 1: Emissions per sector per country for the year 2017. Energy includes electricity generation, direct use of energy and transportation. IPPU is Industrial Processes and Product Use. Source: (Gütschow et al. 2019).
Figure 3: Illustrative electricity output pathway modelled based on overall demand in a SIDS. Own simulation using the LEAP model.
LTS in LDCs

• Goals of LTS in LDCs focus on:
 • developing sustainably along a **low-carbon growth path**
 • **avoiding** the installation and use of **carbon-intensive infrastructure**
 • while planning for **increased resilience** against climate impacts across all sectors
Figure 12: Sectoral shares of total GHG emissions (MtCO₂e in AR4 GWP). (Gütschow, J.; Günther, A.; Jeffery, L.; Gieseke 2021) used for non-LULUCF sectors. (FAOSTAT 2022) for LULUCF.
Example: agriculture sector in LDC LTSs

• Nepal and Benin have adopted Climate-smart agriculture (CSA) as a central pillar of their LTSs
 • CSA aims to support transformation of agri-food systems to sustainably increase agricultural productivity and incomes, while supporting adaptation, resilience and emissions reduction outcomes
 • Development of LTS allows for long-term planning to incorporate mitigation options that also support resilience – e.g. CSA practices such as establishing agroforestry systems, planting climate resilient crops, developing reserve capacity to build resilience to climate disruption
Synergies across sectors remain key...

Nepal's LTS

Vision: Nepal aspires to minimize emissions and sustainably achieve net-zero emissions by the year 2045.

Key elements of the 2045 vision

- Increase the use of clean/renewable power in all sectors, including fuel switching to clean and modern energy in all economic sectors.
- Improve energy efficiency and maximize benefits by utilizing clean energy efficiently in the residential, industrial, and transportation sectors.
- Adopt clean, secure, and connected mobility. This includes decarbonizing the transportation sector through the use of alternative modes of transportation, shifting to electric mass transportation, and increasing the use of clean fuels.
- Increase carbon sinks by managing forests and natural resources in a sustainable manner.
- Encourage sustainable agriculture and land use management to maximize co-benefits.
- Expand the circular economy to improve industrial sustainability, promote industrial sector modernization through installations, and invest in new carbon-neutral and circular-economy compatible technologies and systems.
- **Maximise** the benefits of the mitigation of clean energy trade.
- Enhance international cooperation and support (technical and financial) for climate actions.

Source: Government of Nepal (2021, p. 8)
Resources for preparation and implementation of LTS

- LDCs have limited domestic resources that can be mobilized for LTS development and implementation, and will need to draw on significant international financial support.

- The challenge of limited resources in LDCs is often addressed through securing resources to meet short-term needs, resulting in a project-by-project approach to finance - can create inconsistencies in policies across different sectors that could be avoided by a more holistic, long-term approach.

- A LTS can help LDCs access funding to deliver on the strategy and its related initiatives – demonstrates country ownership and commitment.

- All three LDCs LTS present estimations of the overall costs or level of investment required for implementing key activities in their strategies, and each LTS contains a specific chapter covering a resource mobilization plan for addressing implementation needs.
Including adaptation and AFOLU considerations in LTS
Vivid Economics has been working with the 2050 Pathways Platform to prepare guidance for Long Term Strategies

The guidance focuses on three themes: Adaptation and Resilience; Agriculture, Forestry and Other Land Use (AFOLU); Macroeconomic and Fiscal

1. Scoping
 Establish best practice, understand gaps in capacity to deliver and identify priority focus areas.

2. Guidance: overview
 Overview of how countries can integrate theme across information, intervention and implementation.

3. Guidance: focus areas
 Step-by-step guidance supplemented with case studies in identified priority focus areas.

4. Reporting & launch
 Deliver user-friendly, practical guidance for each theme.

Exhibit 1: thematic checklist
Exhibit 2: flow-chart for deepdive

1. This will be covered in a separate workshop during session 4.
Climate risks will have pervasive impacts on development trajectories in low and middle income countries, the LTS is an opportunity to respond to those risks.

~50 Countries have over half of their population exposed to climate hazards

Advanced geospatial analytics reveals 3.3 billion people today are exposed to heat, drought, urban water stress and flooding, with temperatures 1.0°C above preindustrial levels.

Adaptation strategies often neglect long-term climate risks

- An assessment of climate risk, that accounts for both uncertainty and socioeconomic development scenarios, can help define flexible, adaptive pathways for effective management of long-term climate risk

Adaptation interventions often lack prioritisation and integrated decision-making

- LTS can support developing a flexible portfolio of interventions for effective risk management, including risk reduction, retention and transfer
- LTS can serve as an entry point for integrated decision making that maximises synergies between mitigation and adaptation planning

Adaptation interventions are disproportionately underfinanced

- LTS can more fully appraise investment needs, articulate financing plans, and leverage adaptation finance.

Sources:
- Woodwell Climate Research Center (heat stress), NASA NEX (drought), International Labour Organization (present employment data), IHS Markit (present GDP and future projections), SEDAC (GPW v4, male to female population ratios), NCAR IAM (current population and future projections), McKinsey Climate Analytics

1) Global mean temperature increase is relative to 1986-2005 reference period based on average across 21 CMIP5 models under the RCP 8.5 emissions scenario (IPCC, 2013).
Three focus areas for step-by-step guidance were determined based on an assessment of the gaps in current LTS as well as stakeholder input.

Information
Qualitative and quantitative analysis to inform target-setting and prioritisation

Interventions
Identification and appraisal of key policies and actions

Implementation
Supportive enabling environment to ensure credible implementation

Assess:
- long-term climate risks, uncertainties and impacts on sustainable economic development, taking into account changing exposure and vulnerabilities

Prioritise:
- adaptation and mitigation synergies to avoid trade-offs
- effective balance between risk reduction, retention and transfer to manage climate risk

Realise synergies between mitigation and adaptation is key to prioritising appropriate interventions

1. Assess long-term physical risks and associated climate impacts to inform adaptation policy

 Argentina’s Climate Risks Map System (SIMARCC) to inform LTS and NAP development

2. Realise synergies between mitigation and adaptation

 Tonga’s LTS identifies synergies between mitigation and adaptation

3. Enhancing capacity for accessing international climate finance

 Kenya’s National Adaptation Plan (NAP) estimates costs and mobilises international finance using adaptation metrics

Priority areas
The LTS is an opportunity to leverage cross-cutting interventions in the AFOLU sector

Climate interventions in the AFOLU sector can simultaneously contribute to mitigation, adaptation, rural development and the protection of nature and ecosystems

The LTS is a tool to reduce the large and growing share of GHG in the AFOLU sector

- The AFOLU sector is responsible for a large and growing share of global emissions (24%, rising to 30% under BAU) and has large potential for mitigation
- The LTS is an opportunity to prioritise cost-effective mitigation options with the highest abatement potential across the AFOLU sector

The AFOLU sector is highly vulnerable to climate change

- The AFOLU sector is highly vulnerable to climate risk – key crop yields could fall by 30% in parts of Africa
- An integrated LTS allows countries to develop an appropriate adaptation plan for the sector and leverage the adaptation co-benefits of mitigation

A high share of vulnerable people depend on the AFOLU sector for their livelihoods

- Globally, 65% of people living below the poverty line of $1.90 a day depend on agriculture for their income
- The LTS can be made more inclusive as well as contribute to wider socioeconomic development by engaging with rural marginalised communities

There are many interactions between the natural environment and the AFOLU sector

- AFOLU affects and depends upon natural capital, including soil, water, forests and biodiversity
- Climate action can protect and improve the environment and minimise the environmental damages created by the AFOLU sector
Four focus areas for step-by-step guidance were determined based on an assessment of the gaps in current LTS as well as stakeholder input.

<table>
<thead>
<tr>
<th>Information</th>
<th>Interventions</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative and quantitative analysis to inform target-setting and prioritisation</td>
<td>Identification and appraisal of key policies and actions</td>
<td>Supportive enabling environment to ensure credible implementation</td>
</tr>
</tbody>
</table>

Analyse:
- Emissions mitigation potential for the AFOLU sector
- Physical climate risks affecting the AFOLU sector
- Climate change impacts on socioeconomic and ecosystem indicators

1. Analysis of sector physical climate risks

Chile has developed tools to monitor and analyse physical climate risks to the AFOLU sector

Develop:
- Strategy for LTS to leverage cross-cutting interventions and minimise trade-offs between priorities in the AFOLU sector
- Strategy to leverage Nature Based Solutions (NBS) and nature-positive interventions

2. Leveraging cross-cutting interventions

Costa Rica has developed a quantitative framework for policy appraisal

3. Integration of NBS and nature-positive interventions

Colombia’s LTS was informed by an analysis of natural capital and spatial prioritisation of NBS

Enhance capacity for:
- Defining institutional arrangements
- Financing of interventions in the AFOLU sector
- Mainstreaming inclusivity throughout policy design and target-setting

4. Consideration and support of disadvantaged communities

Colombia’s LTS was informed through engagement with marginalised communities
Q&A
CARBON NEUTRALITY OF THE AFOLU SECTOR IN ARGENTINA

Iris Barth & Federico Frank

This event has been organised with the financial support of the European Union’s Partnership Instrument and the German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) in the context of the International Climate Initiative (IKI). The opinions expressed are the sole responsibility of the speakers and do not necessarily reflect the views of the funders.

2050 Pathways Platform annual meeting session 1: Laying the Foundations for LTS

April 6th, 2022
OBJECTIVE OF THE SPIPA PROJECT

To bring scientific evidence to the Ministry of Environment and Sustainable Development (MAyDS), and the Ministry of Agriculture, Husbandry and Fishery (MAGyP), for the elaboration of Long Term Strategies for the AFOLU sector of Argentina.
OVERVIEW OF THE SPIIPA PROJECT

STEP 1: Workshops with “Scenarists”

STEP 2: Fable Calculator

STEP 3: Dinamica Ego

STEP 4: Naturemap

STEP 5: LTS Report
WORKSHOPS WITH “SCENARISTS”

STAKEHOLDERS FROM THE AFOLU SECTOR

INFORMATION AND NARRATIVES FOR THE MODELING WORK
The calculation STEPS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Calculation SHEETS</th>
<th>Short DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>1. cale human demand</td>
<td>TARGET human consumption (per crop and animal products).</td>
</tr>
<tr>
<td>Step 2</td>
<td>2. cale livestock</td>
<td>TARGET herd size, animal feed, pasture area, exports (per animal product and animal type).</td>
</tr>
<tr>
<td>Step 3</td>
<td>3. cale crops</td>
<td>TARGET crop production, harvested areas and exports (per crop).</td>
</tr>
<tr>
<td>Step 4</td>
<td>4. cale land</td>
<td>FEASIBLE pasture land and cropland, adjustment factor.</td>
</tr>
<tr>
<td>Step 5</td>
<td>5. feas livestock</td>
<td>FEASIBLE livestock values: pasture area, herd size, animal feed, exports of animal products.</td>
</tr>
<tr>
<td>Step 6</td>
<td>6. feas crops</td>
<td>FEASIBLE crop production, harvested areas and exports (per crop and final crop product).</td>
</tr>
<tr>
<td>Step 7</td>
<td>7. feas consohum</td>
<td>FEASIBLE human consumption and nutrition per capita (per crop and animal product).</td>
</tr>
<tr>
<td>Step 8</td>
<td>8. cale emissions</td>
<td>Emissions for the FEASIBLE values (for ruminant, monogastric animal, crop production and land use change).</td>
</tr>
</tbody>
</table>
MODEL: DINAMICA EGO

TRANSITION MATRIX

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\]

EXPLANATORY VARIABLES

\[
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]
MODEL: NATUREMAP

Overlap with food production

A Long Term Strategy that is also compatible with Biodiversity Conservation
SYNTHESIS

FOOD DEMAND
LAND DEMAND

FABLE CALCULATOR

PROBABLE AND FEASIBLE
LAND-USE CHANGES

ECOSYSTEM SERVICES PROVISION
WATER + BIODIVERSITY + CARBON

NatureMap
THANK YOU FOR THE YOUR TIME!

Iris Barth: barth.iris@inta.gob.ar
Federico Frank: frank.federico@inta.gob.ar
The role of sufficiency

Energy sufficiency as a key enabler to meet climate urgency and build long-term sustainability

Yves Marignac – Spokeperson
6 April 2022 – Visioconference
Sufficiency emerges as a short-term response...

RePowerEU and cut our dependence on Russian gas

A 10-Point Plan to Cut Oil Use

Russia’s war in Ukraine: Why doubling down on the Green Deal is the best strategy

Phasing out dependence on Russian natural gas: what strategies for the EU and France?
IPCC, 2022: “Demand-side mitigation can be achieved through changes in socio-cultural factors, infrastructure design and use, and end-use technology adoption by 2050”

Source: IPCC, AR6-WG III, Summary for Policymakers (2022)
Sufficiency at the start of a systemic approach

IPCC, 2022: “Sufficiency policies are a set of measures and daily practices that avoid demand for energy, materials, land and water while delivering human wellbeing for all within planetary boundaries.”
Sufficiency leverages

1. **Servicial**
 - Intensity and duration of use of equipments

2. **Dimensional**
 - Size, nominal capacity of equipments

3. **Organisational**
 - Collective planning and sharing

Sufficiency on other goods and food

- Information
 - Raising awareness
- Incentives
 - Regulation
- Land-use and urban planning
 - Building of infrastructures
- Consistency and comprehensiveness

- Deposit
- Coworking
- Diesel
- Electric
Sufficiency policies are a set of measures and daily practices that avoid demand for energy, materials, land and water while delivering human wellbeing for all within planetary boundaries.

Bringing individual services between sustainability boundaries:

- **A ceiling** of sound collective levels: the ecological limits beyond which living conditions are threatened
- **A foundation** of decent live levels: the social minimums below which life in society is degraded
- Moderate global consumption while reinforcing solidarity and redistribution

The “doughnut economy” concept (Raworth et al.)
Sufficiency in scenarios

Building energy sufficiency assumptions in models and scenarios

- Indicators
- Potentials
- Policies
- Assumptions

Residential

- Average m^2 per person stabilized
- Average number of people per household stabilized
- New built: reduced share of individual houses
- Retrofit of existing buildings to reduce the rate of new construction
- Moderate rate and size of equipment

Mobility

- Modal shift: - plane to train - car to collective transport and soft modes
- 15% reduction of traveled distances (telework, urban planning…)
- Car sharing and car pooling (40% reduction of number of new cars)
- Reduced speed limits

Similar set of assumptions for other sectors: tertiary, freight, industry, agriculture
The impact of sufficiency in the négaWatt scenario 2022 for France

2022-2050

Sufficiency
- accounts for ~20% drop in the demand of final energy)
- out of 53% in total
- contributes to meeting net-zero carbon footprint
- also contributes to strongly reducing net primary materials footprint
- and brings multiple co-benefits

The impact of sufficiency in the négaWatt scenario 2022 for France

Source: négaWatt, Scénario 2022-2050 (2021)
Building sufficiency on a European level (1/2)

European Scenario

A collaborative European low energy scenario for Europe to bridge the climate and sustainability gap through energy sufficiency, efficiency and renewables

A bottom-up approach relying on national partners allows us to define corridors on important indicators which enable to discuss a convergence on ambition while considering national specificities.

- **Average residential floor area per person (m²/cap)**
 - Corridor of projections based on the first set of national trajectories

- **Average distance covered per person (p.km/cap)**
 - Corridor of projections in the first set of national trajectories

Supported by European Climate Foundation
Building sufficiency on a European level (2/2)

A project on energy sufficiency and its integration into climate and energy strategies in the Central and Eastern European (CEE) context

A specific work with partners in Hungary (REKK) and Lithuania (LEI) on the potential for energy sufficiency in their national contexts and ways to build energy sufficiency assumptions in operating models to develop energy sufficiency-based policies.

Target level for floor area per capita

- Hungary (HU): 33.7 m²
- Lithuania (LT): 34.8
- Theoretical potential: 30 m²

Target level for distances by car per capita

- Hungary (HU): 37.05 km
- Lithuania (LT): 32 km
- Theoretical potential: 30 km

Supported by European Climate Initiative (EUKI)
Conclusion and next steps

1. Energy sufficiency is a **key enabler** to:
 - accelerate the reduction of GHG emissions
 - contribute to building deep sustainability
 - develop resilience to shocks and crisis

2. Integrating energy sufficiency in **models**, **scenarios** and **policies** is needed and possible

3. Further work is needed to consolidate **experience** and strengthen **confidence**

European Scenario
- First findings published in June 2022
- First European trajectory published in December 2022
- Publication of the final scenario in Spring 2022
- https://www.negawatt.org/An-ambitious-energy-and-climate-scenario-for-Europe

CACTUS
- Final results to be published in May-June 2022
- https://cactus-energy-sufficiency.eu/

FULFILL
- Starting a H2020 project on sufficiency based lifestyle changes as part of ambitious climate policies, November 2021-October 2024
- http://fulfill-sufficiency.eu/
We are happy to share, **extend our network** and **develop new exchanges** about sufficiency-based, ambitious energy and climate scenarios and policies in Europe.

Nicolas TAILLARD
European scenario Project manager
nicolas.taillard[at]negawatt.org

Stephane BOURGEOIS
European network and external manager
stephane.bourgeois[at]negawatt.org
+33 6 33 32 09 93

Yves MARIGNAC
Methodological adviser
yves.marignac[at]negawatt.org
+33 6 07 71 02 41

Contact[at]negawatt.org
https://negawatt.org/en
Discussion / Q&A
Upcoming sessions

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Session title</th>
<th>Session aims</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, April 7</td>
<td>13:00 pm – 14:30 pm CEST</td>
<td>Session 2: Engaging stakeholders in the context of LTS to ensure a cross-societal buy-in</td>
<td>Present best practices to date to ensure broad participation of stakeholders in the elaboration and implementation of LTS, and on how to communicate around LTS. During the session, we will hear from countries about their experiences for a whole-of-government and cross-societal LTS process. We will also be touching upon the growing traction of climate citizens assemblies.</td>
</tr>
<tr>
<td>Tuesday, April 12</td>
<td></td>
<td>Session 3: International funding for LTS design and implementation</td>
<td>Present the ecosystem of support for LTS elaboration and implementation to countries and enable coordination amongst partners supporting LTS. During the session, we will hear from bilateral and multilateral development banks on their technical cooperation programmes for LTS.</td>
</tr>
<tr>
<td>Wednesday, April 13</td>
<td></td>
<td>Session 4: Policy and development planning: the macro-economic and financial implications of the transition</td>
<td>Reflect on the importance to draw near-term macro-economic and financial issues out of the LTS and on what expertise in economics and finance needs to be mobilised in the LTS process to start addressing these issues. During the session, we will also explore how to account for macroeconomic and fiscal issues in the LTS.</td>
</tr>
</tbody>
</table>
Resources

- UNFCCC repository of long-term strategies
- Handbook, 2050 Pathways Platform
- Horizon to Horizon, Climate Works Centre, 2018
- Quality Assurance Checklist: For long-term low greenhouse gas emission development strategies, WRI and UNDP 2021
- Making Long-Term Low GHG Emissions Development Strategies a Reality, GIZ 2020
- Designing and communication net-zero targets, WRI 2020
- Good governance for long-term low-emissions development strategies, WRI 2019
- Long-term low emissions development strategies, cross-country experience, OECD 2020
- Insights on the First 29 LTS Submitted to the UNFCCC, WRI 2021
Thank you for your attention